Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Front Cell Dev Biol ; 12: 1363361, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38715921

RESUMO

Cell migration is fundamental to both development and adult physiology, including gastrulation, brain development, angiogenesis, wound healing, bone remodeling, tissue homeostasis, and the immune response. Additionally, misguided cellular migration is implicated in disease pathologies such as cancer metastasis and fibrosis. The microenvironment influences cell migration modes such as mesenchymal, amoeboid, lobopodial, and collective, and these are governed through local signaling by affecting the gene expression and epigenetic alteration of migration-related genes. Plasticity in switching between migration modes is essential for key cellular processes across various contexts. Understanding the mechanisms of cell migration modes and its plasticity is essential for unraveling the complexities of this process and revealing its implications in physiological and pathological contexts. This review focuses on different modes of cell migration, including their aberrant migration in disease pathologies and how they can be therapeutically targeted in disease conditions such as cancer.

2.
EMBO Mol Med ; 16(4): 823-853, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38480932

RESUMO

Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype, characterized by extensive intratumoral heterogeneity, high metastasis, and chemoresistance, leading to poor clinical outcomes. Despite progress, the mechanistic basis of these aggressive behaviors remains poorly understood. Using single-cell and spatial transcriptome analysis, here we discovered basal epithelial subpopulations located within the stroma that exhibit chemoresistance characteristics. The subpopulations are defined by distinct signature genes that show a frequent gain in copy number and exhibit an activated epithelial-to-mesenchymal transition program. A subset of these genes can accurately predict chemotherapy response and are associated with poor prognosis. Interestingly, among these genes, elevated ITGB1 participates in enhancing intercellular signaling while ACTN1 confers a survival advantage to foster chemoresistance. Furthermore, by subjecting the transcriptional signatures to drug repurposing analysis, we find that chemoresistant tumors may benefit from distinct inhibitors in treatment-naive versus post-NAC patients. These findings shed light on the mechanistic basis of chemoresistance while providing the best-in-class biomarker to predict chemotherapy response and alternate therapeutic avenues for improved management of TNBC patients resistant to chemotherapy.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Transcriptoma , Perfilação da Expressão Gênica , Transdução de Sinais , Transição Epitelial-Mesenquimal , Linhagem Celular Tumoral
3.
NPJ Precis Oncol ; 8(1): 64, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472332

RESUMO

Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype characterised by extensive intratumoral heterogeneity, high rates of metastasis and chemoresistance, leading to poor clinical outcomes. Despite progress, the mechanistic basis of chemotherapy resistance in TNBC patients remains poorly understood. Here, leveraging single-cell transcriptome datasets of matched longitudinal TNBC chemoresponsive and chemoresistant patient cohorts, we unravel distinct cell subpopulations intricately associated with chemoresistance and the signature genes defining these populations. Notably, using genome-wide mapping of the H3K27ac mark, we show that the expression of these chemoresistance genes is driven via a set of TNBC super-enhancers and associated transcription factor networks across TNBC subtypes. Furthermore, genetic screens reveal that a subset of these transcription factors is essential for the survival of TNBC cells, and their loss increases sensitivity to chemotherapeutic agents. Overall, our study has revealed epigenetic and transcription factor networks underlying chemoresistance and suggests novel avenues to stratify and improve the treatment of patients with a high risk of developing resistance.

4.
Nat Commun ; 15(1): 1870, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467607

RESUMO

Myelin regeneration (remyelination) is essential to prevent neurodegeneration in demyelinating diseases such as Multiple Sclerosis, however, its efficiency declines with age. Regulatory T cells (Treg) recently emerged as critical players in tissue regeneration, including remyelination. However, the effect of ageing on Treg-mediated regenerative processes is poorly understood. Here, we show that expansion of aged Treg does not rescue age-associated remyelination impairment due to an intrinsically diminished capacity of aged Treg to promote oligodendrocyte differentiation and myelination in male and female mice. This decline in regenerative Treg functions can be rescued by a young environment. We identified Melanoma Cell Adhesion Molecule 1 (MCAM1) and Integrin alpha 2 (ITGA2) as candidates of Treg-mediated oligodendrocyte differentiation that decrease with age. Our findings demonstrate that ageing limits the neuroregenerative capacity of Treg, likely limiting their remyelinating therapeutic potential in aged patients, and describe two mechanisms implicated in Treg-driven remyelination that may be targetable to overcome this limitation.


Assuntos
Remielinização , Humanos , Masculino , Feminino , Camundongos , Animais , Idoso , Remielinização/fisiologia , Linfócitos T Reguladores/metabolismo , Oligodendroglia/fisiologia , Diferenciação Celular/fisiologia , Bainha de Mielina/metabolismo , Envelhecimento , Sistema Nervoso Central
5.
Vision Res ; 214: 108339, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38039846

RESUMO

Retinal function changes dramatically from day to night, yet clinical diagnosis, treatments, and experimental sampling occur during the day. To begin to address this gap in our understanding of disease pathobiology, this study investigates whether diabetes affects the retina's daily rhythm of gene expression. Diabetic, Ins2Akita/J mice, and non-diabetic littermates were kept under a 12 h:12 h light/dark cycle until 4 months of age. mRNA sequencing was conducted in retinas collected every 4 h throughout the 24 hr light/dark cycle. Computational approaches were used to detect rhythmicity, predict acrophase, identify differential rhythmic patterns, analyze phase set enrichment, and predict upstream regulators. The retinal transcriptome exhibited a tightly regulated rhythmic expression with a clear 12-hr transcriptional axis. Day-peaking genes were enriched for DNA repair, RNA splicing, and ribosomal protein synthesis, night-peaking genes for metabolic processes and growth factor signaling. Although the 12-hr transcriptional axis is retained in the diabetic retina, it is phase advanced for some genes. Upstream regulator analysis for the phase-shifted genes identified oxygen-sensing mechanisms and HIF1alpha, but not the circadian clock, which remained in phase with the light/dark cycle. We propose a model in which, early in diabetes, the retina is subjected to an internal desynchrony with the circadian clock and its outputs are still light-entrained whereas metabolic pathways related to neuronal dysfunction and hypoxia are phase advanced. Further studies are now required to evaluate the chronic implications of such desynchronization on the development of diabetic retinopathy.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Camundongos , Animais , Ritmo Circadiano/genética , Transcriptoma , Retina/metabolismo , Retinopatia Diabética/genética , Retinopatia Diabética/metabolismo , Fotoperíodo
6.
Database (Oxford) ; 20232023 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-37971714

RESUMO

Diploid A-genome wheat (einkorn wheat) presents a nutrition-rich option as an ancient grain crop and a resource for the improvement of bread wheat against abiotic and biotic stresses. Realizing the importance of this wheat species, reference-level assemblies of two einkorn wheat accessions were generated (wild and domesticated). This work reports an einkorn genome database that provides an interface to the cereals research community to perform comparative genomics, applied genetics and breeding research. It features queries for annotated genes, the use of a recent genome browser release, and the ability to search for sequence alignments using a modern BLAST interface. Other features include a comparison of reference einkorn assemblies with other wheat cultivars through genomic synteny visualization and an alignment visualization tool for BLAST results. Altogether, this resource will help wheat research and breeding. Database URL  https://wheat.pw.usda.gov/GG3/pangenome.


Assuntos
Genoma de Planta , Triticum , Triticum/genética , Genoma de Planta/genética , Melhoramento Vegetal , Genômica/métodos , Estudos de Associação Genética
7.
Eur J Neurosci ; 58(9): 3921-3931, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37807181

RESUMO

Up to 80% of children with autism spectrum disorder have at least one other neuropsychiatric comorbidity. The causes of such disorders are highly genetic, yet many studies fail to take analysis further than risk gene discovery to see cellular and mechanistic changes occurring. Therefore, the goal of this study was to unveil novel gene expression signatures involved in important neurodevelopmental processes that, when disrupted, lead to each of the autism comorbidities of interest. We achieved this by analysing a single-nuclei RNA sequencing dataset with prefrontal cortex samples from autism spectrum disorder plus comorbidities for differentially expressed genes. The highest number of alterations was seen in excitatory neurons, which also showed differential population and cell-cell interactions across disorders and an increase in expression of genes involved in neurodevelopmental pathways. Interestingly, the group without comorbidities displayed an increase in neuron-neuron interactions yet a decrease in population number, suggesting a major rewiring of neuronal connections. Further analysis of the topmost significant genes from this cell type in developing prefrontal cortex datasets revealed interesting expression trajectories corresponding to important time points during corticogenesis. This further identified four novel candidate genes that show a potential link to developmental pathways that may contribute to autism and its comorbidities when dysregulated. The study provides a better understanding of co-occurring conditions at a transcriptomic and cell-type level and thereby aid future research in providing earlier diagnosis, care and intervention.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Criança , Humanos , Transtorno do Espectro Autista/metabolismo , Transtorno Autístico/genética , Neurônios/metabolismo , Córtex Pré-Frontal/metabolismo , Comorbidade
8.
Nature ; 620(7975): 830-838, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37532937

RESUMO

Einkorn (Triticum monococcum) was the first domesticated wheat species, and was central to the birth of agriculture and the Neolithic Revolution in the Fertile Crescent around 10,000 years ago1,2. Here we generate and analyse 5.2-Gb genome assemblies for wild and domesticated einkorn, including completely assembled centromeres. Einkorn centromeres are highly dynamic, showing evidence of ancient and recent centromere shifts caused by structural rearrangements. Whole-genome sequencing analysis of a diversity panel uncovered the population structure and evolutionary history of einkorn, revealing complex patterns of hybridizations and introgressions after the dispersal of domesticated einkorn from the Fertile Crescent. We also show that around 1% of the modern bread wheat (Triticum aestivum) A subgenome originates from einkorn. These resources and findings highlight the history of einkorn evolution and provide a basis to accelerate the genomics-assisted improvement of einkorn and bread wheat.


Assuntos
Produção Agrícola , Genoma de Planta , Genômica , Triticum , Triticum/classificação , Triticum/genética , Produção Agrícola/história , História Antiga , Sequenciamento Completo do Genoma , Introgressão Genética , Hibridização Genética , Pão/história , Genoma de Planta/genética , Centrômero/genética
9.
Front Plant Sci ; 14: 1144000, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37521926

RESUMO

Wheat is one of the most important cereal crops for the global food security. Due to its narrow genetic base, modern bread wheat cultivars face challenges from increasing abiotic and biotic stresses. Since genetic improvement is the most sustainable approach, finding novel genes and alleles is critical for enhancing the genetic diversity of wheat. The tertiary gene pool of wheat is considered a gold mine for genetic diversity as novel genes and alleles can be identified and transferred to wheat cultivars. Aegilops geniculata and Ae. umbellulata are the key members of the tertiary gene pool of wheat and harbor important genes against abiotic and biotic stresses. Homoeologous-group five chromosomes (5Uu and 5Mg) have been extensively studied from Ae. geniculata and Ae. umbellulata as they harbor several important genes including Lr57, Lr76, Yr40, Yr70, Sr53 and chromosomal pairing loci. In the present study, using chromosome DNA sequencing and RNAseq datasets, we performed comparative analysis to study homoeologous gene evolution in 5Mg, 5Uu, and group 5 wheat chromosomes. Our findings highlight the diversity of transcription factors and resistance genes, resulting from the differential expansion of the gene families. Both the chromosomes were found to be enriched with the "response to stimulus" category of genes providing resistance against biotic and abiotic stress. Phylogenetic study positioned the M genome closer to the D genome, with higher proximity to the A genome than the B genome. Over 4000 genes were impacted by SNPs on 5D, with 4-5% of those genes displaying non-disruptive variations that affect gene function.

10.
Proc Natl Acad Sci U S A ; 120(30): e2216658120, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37463203

RESUMO

There remains an urgent need for new therapies for treatment-resistant epilepsy. Sodium channel blockers are effective for seizure control in common forms of epilepsy, but loss of sodium channel function underlies some genetic forms of epilepsy. Approaches that provide bidirectional control of sodium channel expression are needed. MicroRNAs (miRNA) are small noncoding RNAs which negatively regulate gene expression. Here we show that genome-wide miRNA screening of hippocampal tissue from a rat epilepsy model, mice treated with the antiseizure medicine cannabidiol, and plasma from patients with treatment-resistant epilepsy, converge on a single target-miR-335-5p. Pathway analysis on predicted and validated miR-335-5p targets identified multiple voltage-gated sodium channels (VGSCs). Intracerebroventricular injection of antisense oligonucleotides against miR-335-5p resulted in upregulation of Scn1a, Scn2a, and Scn3a in the mouse brain and an increased action potential rising phase and greater excitability of hippocampal pyramidal neurons in brain slice recordings, consistent with VGSCs as functional targets of miR-335-5p. Blocking miR-335-5p also increased voltage-gated sodium currents and SCN1A, SCN2A, and SCN3A expression in human induced pluripotent stem cell-derived neurons. Inhibition of miR-335-5p increased susceptibility to tonic-clonic seizures in the pentylenetetrazol seizure model, whereas adeno-associated virus 9-mediated overexpression of miR-335-5p reduced seizure severity and improved survival. These studies suggest modulation of miR-335-5p may be a means to regulate VGSCs and affect neuronal excitability and seizures. Changes to miR-335-5p may reflect compensatory mechanisms to control excitability and could provide biomarker or therapeutic strategies for different types of treatment-resistant epilepsy.


Assuntos
Epilepsia , Células-Tronco Pluripotentes Induzidas , MicroRNAs , Canais de Sódio Disparados por Voltagem , Humanos , Camundongos , Ratos , Animais , Células-Tronco Pluripotentes Induzidas/metabolismo , Convulsões/induzido quimicamente , Convulsões/genética , Convulsões/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Canais de Sódio Disparados por Voltagem/genética , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Canal de Sódio Disparado por Voltagem NAV1.1/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.3/genética
11.
Diabetologia ; 66(8): 1557-1575, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37351595

RESUMO

AIMS/HYPOTHESIS: Type 2 diabetes is associated with increased risk of cognitive decline although the pathogenic basis for this remains obscure. Deciphering diabetes-linked molecular mechanisms in cells of the cerebral cortex could uncover novel therapeutic targets. METHODS: Single-cell transcriptomic sequencing (scRNA-seq) was conducted on the cerebral cortex in a mouse model of type 2 diabetes (db/db mice) and in non-diabetic control mice in order to identify gene expression changes in distinct cell subpopulations and alterations in cell type composition. Immunohistochemistry and metabolic assessment were used to validate the findings from scRNA-seq and to investigate whether these cell-specific dysfunctions impact the neurovascular unit (NVU). Furthermore, the behavioural and cognitive alterations related to these dysfunctions in db/db mice were assessed via Morris water maze and novel object discrimination tests. Finally, results were validated in post-mortem sections and protein isolates from individuals with type 2 diabetes. RESULTS: Compared with non-diabetic control mice, the db/db mice demonstrated disrupted brain function as revealed by losses in episodic and spatial memory and this occurred concomitantly with dysfunctional NVU, neuronal circuitry and cerebral atrophy. scRNA-seq of db/db mouse cerebral cortex revealed cell population changes in neurons, glia and microglia linked to functional regulatory disruption including neuronal maturation and altered metabolism. These changes were validated through immunohistochemistry and protein expression analysis not just in the db/db mouse cerebral cortex but also in post-mortem sections and protein isolates from individuals with type 2 diabetes (74.3 ± 5.5 years) compared with non-diabetic control individuals (87.0 ± 8.5 years). Furthermore, metabolic and synaptic gene disruptions were evident in cortical NVU cell populations and associated with a decrease in vascular density. CONCLUSIONS/INTERPRETATION: Taken together, our data reveal disruption in the cellular and molecular architecture of the cerebral cortex induced by diabetes, which can explain, at least in part, the basis for progressive cognitive decline in individuals with type 2 diabetes. DATA AVAILABILITY: The single-cell sequencing data that supports this study are available at GEO accession GSE217665 ( https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE217665 ).


Assuntos
Disfunção Cognitiva , Diabetes Mellitus Tipo 2 , Camundongos , Animais , Diabetes Mellitus Tipo 2/complicações , Disfunção Cognitiva/tratamento farmacológico , Córtex Cerebral/metabolismo , Modelos Animais de Doenças
12.
Front Mol Neurosci ; 16: 1126438, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37138706

RESUMO

The human brain is divided into various anatomical regions that control and coordinate unique functions. The prefrontal cortex (PFC) is a large brain region that comprises a range of neuronal and non-neuronal cell types, sharing extensive interconnections with subcortical areas, and plays a critical role in cognition and memory. A timely appearance of distinct cell types through embryonic development is crucial for an anatomically perfect and functional brain. Direct tracing of cell fate development in the human brain is not possible, but single-cell transcriptome sequencing (scRNA-seq) datasets provide the opportunity to dissect cellular heterogeneity and its molecular regulators. Here, using scRNA-seq data of human PFC from fetal stages, we elucidate distinct transient cell states during PFC development and their underlying gene regulatory circuitry. We further identified that distinct intermediate cell states consist of specific gene regulatory modules essential to reach terminal fate using discrete developmental paths. Moreover, using in silico gene knock-out and over-expression analysis, we validated crucial gene regulatory components during the lineage specification of oligodendrocyte progenitor cells. Our study illustrates unique intermediate states and specific gene interaction networks that warrant further investigation for their functional contribution to typical brain development and discusses how this knowledge can be harvested for therapeutic intervention in challenging neurodevelopmental disorders.

13.
Nat Plants ; 9(3): 385-392, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36797350

RESUMO

Since emerging in Brazil in 1985, wheat blast has spread throughout South America and recently appeared in Bangladesh and Zambia. Here we show that two wheat resistance genes, Rwt3 and Rwt4, acting as host-specificity barriers against non-Triticum blast pathotypes encode a nucleotide-binding leucine-rich repeat immune receptor and a tandem kinase, respectively. Molecular isolation of these genes will enable study of the molecular interaction between pathogen effector and host resistance genes.


Assuntos
Magnaporthe , Triticum , Triticum/genética , Triticum/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Brasil , Bangladesh
14.
J Adv Res ; 48: 47-60, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36084813

RESUMO

INTRODUCTION: The domestication bottleneck has reduced genetic diversity inwheat, necessitating the use of wild relatives in breeding programs. Wild tetraploid wheat are widely used in the breeding programs but with morphological characters, it is difficult to distinguish these, resulting in misclassification/mislabeling or duplication of accessions in the Gene bank. OBJECTIVES: The study aims to exploreGenotyping by sequencing (GBS) to characterize wild and domesticated tetraploid wheat accessions to generate a core set of accessions to be used in the breeding program. METHODS: TASSEL-GBS pipeline was used for SNP discovery, fastStructure was used to determine the population structure and PowerCore was used to generate a core sets. Nucleotide diversity matrices of Nie's and F-statistics (FST) index were used to determine the center of genetic diversity. RESULTS: We found 65 % and 47 % duplicated accessions in Triticum timopheevii and T. turgidum respectively. Genome-wide nucleotide diversity and FST scan uncovered a lower intra and higher inter-species differentiation. Distinct FST regions were identified in genomic regions belonging to domestication genes: non-brittle rachis (Btr1) and vernalization (VRN-1).Our results suggest that Israel, Jordan, Syria, and Lebanonas the hub of genetic diversity of wild emmer;Turkey, and Georgia for T. durum; and Iraq, Azerbaijan, and Armenia for theT. timopheevii. Identified core set accessions preserved more than 93 % of the available genetic diversity. Genome wide association study (GWAS) indicated the potential chromosomal segment for resistance to leaf rust in T. timopheevii. CONCLUSION: The present study explored the potential of GBS technology in data reduction while maintaining the significant genetic diversity of the species. Wild germplasm showed more differentiation than domesticated accessions, indicating the availability of sufficient diversity for crop improvement. With reduced complexity, the core set preserves the genetic diversity of the gene bank collections and will aid in a more robust characterization of wild germplasm.


Assuntos
Estudo de Associação Genômica Ampla , Triticum , Triticum/genética , Tetraploidia , Melhoramento Vegetal , Nucleotídeos
15.
Nat Cell Biol ; 24(8): 1265-1277, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35941369

RESUMO

Epithelial-to-mesenchymal transition (EMT) renders epithelial cells migratory properties. While epigenetic and splicing changes have been implicated in EMT, the mechanisms governing their crosstalk remain poorly understood. Here we discovered that a C2H2 zinc finger protein, ZNF827, is strongly induced during various contexts of EMT, including in brain development and breast cancer metastasis, and is required for the molecular and phenotypic changes underlying EMT in these processes. Mechanistically, ZNF827 mediated these responses by orchestrating a large-scale remodelling of the splicing landscape by recruiting HDAC1 for epigenetic modulation of distinct genomic loci, thereby slowing RNA polymerase II progression and altering the splicing of genes encoding key EMT regulators in cis. Our findings reveal an unprecedented complexity of crosstalk between epigenetic landscape and splicing programme in governing EMT and identify ZNF827 as a master regulator coupling these processes during EMT in brain development and breast cancer metastasis.


Assuntos
Neoplasias da Mama , Epigenoma , Processamento Alternativo , Encéfalo/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Metástase Neoplásica
16.
Biochim Biophys Acta Gene Regul Mech ; 1865(7): 194860, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36007842

RESUMO

Cortical development consists of a series of synchronised events, including fate transition of cortical progenitors, neuronal migration, specification and connectivity. It is becoming clear that gene expression programs governing these events rely on the interplay between signalling molecules, transcription factors and epigenetic mechanisms. When genetic or environmental factors disrupt expression of genes involved in important brain development processes, neurodevelopmental disorders can occur. This review aims to highlight how recent advances in technologies have helped uncover and imitate the gene regulatory mechanisms commonly disrupted in neurodevelopmental disorders.


Assuntos
Epigênese Genética , Transtornos do Neurodesenvolvimento , Humanos , Transtornos do Neurodesenvolvimento/genética , Neurogênese/genética , Fatores de Transcrição/genética
17.
Nat Commun ; 13(1): 4320, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35896547

RESUMO

Epilepsy is associated with genetic risk factors and cortico-subcortical network alterations, but associations between neurobiological mechanisms and macroscale connectomics remain unclear. This multisite ENIGMA-Epilepsy study examined whole-brain structural covariance networks in patients with epilepsy and related findings to postmortem epilepsy risk gene expression patterns. Brain network analysis included 578 adults with temporal lobe epilepsy (TLE), 288 adults with idiopathic generalized epilepsy (IGE), and 1328 healthy controls from 18 centres worldwide. Graph theoretical analysis of structural covariance networks revealed increased clustering and path length in orbitofrontal and temporal regions in TLE, suggesting a shift towards network regularization. Conversely, people with IGE showed decreased clustering and path length in fronto-temporo-parietal cortices, indicating a random network configuration. Syndrome-specific topological alterations reflected expression patterns of risk genes for hippocampal sclerosis in TLE and for generalized epilepsy in IGE. These imaging-transcriptomic signatures could potentially guide diagnosis or tailor therapeutic approaches to specific epilepsy syndromes.


Assuntos
Conectoma , Epilepsia Generalizada , Epilepsia do Lobo Temporal , Epilepsia , Adulto , Epilepsia Generalizada/genética , Epilepsia do Lobo Temporal/diagnóstico , Epilepsia do Lobo Temporal/genética , Expressão Gênica , Humanos , Imunoglobulina E , Imageamento por Ressonância Magnética , Rede Nervosa
18.
Nat Commun ; 13(1): 3044, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35650212

RESUMO

The wheat wild relative Aegilops tauschii was previously used to transfer the Lr42 leaf rust resistance gene into bread wheat. Lr42 confers resistance at both seedling and adult stages, and it is broadly effective against all leaf rust races tested to date. Lr42 has been used extensively in the CIMMYT international wheat breeding program with resulting cultivars deployed in several countries. Here, using a bulked segregant RNA-Seq (BSR-Seq) mapping strategy, we identify three candidate genes for Lr42. Overexpression of a nucleotide-binding site leucine-rich repeat (NLR) gene AET1Gv20040300 induces strong resistance to leaf rust in wheat and a mutation of the gene disrupted the resistance. The Lr42 resistance allele is rare in Ae. tauschii and likely arose from ectopic recombination. Cloning of Lr42 provides diagnostic markers and over 1000 CIMMYT wheat lines carrying Lr42 have been developed documenting its widespread use and impact in crop improvement.


Assuntos
Aegilops , Basidiomycota , Aegilops/genética , Basidiomycota/genética , Mapeamento Cromossômico , Clonagem Molecular , Resistência à Doença/genética , Genes de Plantas/genética , Melhoramento Vegetal , Doenças das Plantas/genética , Puccinia , Triticum/genética
19.
Biochem Soc Trans ; 50(3): 1245-1257, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35713387

RESUMO

Activating invasion and metastasis are one of the primary hallmarks of cancer, the latter representing the leading cause of death in cancer patients. Whilst many advances in this area have been made in recent years, the process of cancer dissemination and the underlying mechanisms governing invasion are still poorly understood. Cancer cells exhibit multiple invasion strategies, including switching between modes of invasion and plasticity in response to therapies, surgical interventions and environmental stimuli. The ability of cancer cells to switch migratory modes and their inherent plasticity highlights the critical challenge preventing the successful design of cancer and anti-metastatic therapies. This mini-review presents current knowledge on the critical models of tumour invasion and dissemination. We also discuss the current issues surrounding current treatments and arising therapeutic opportunities. We propose that the establishment of novel approaches to study the key biological mechanisms underlying the metastatic cascade is critical in finding novel targets that could ultimately lead to complete inhibition of cancer cell invasion and dissemination.


Assuntos
Invasividade Neoplásica , Humanos , Invasividade Neoplásica/patologia , Metástase Neoplásica
20.
Development ; 149(3)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35147187

RESUMO

Corticogenesis consists of a series of synchronised events, including fate transition of cortical progenitors, neuronal migration, specification and connectivity. NeuroD1, a basic helix-loop-helix (bHLH) transcription factor (TF), contributes to all of these events, but how it coordinates these independently is still unknown. Here, we demonstrate that NeuroD1 expression is accompanied by a gain of active chromatin at a large number of genomic loci. Interestingly, transcriptional activation of these loci relied on a high local density of adjacent bHLH TFs motifs, including, predominantly, Tcf12. We found that activity and expression levels of Tcf12 were high in cells with induced levels of NeuroD1 that spanned the transition of cortical progenitors from proliferative to neurogenic divisions. Moreover, Tcf12 forms a complex with NeuroD1 and co-occupies a subset of NeuroD1 target loci. This Tcf12-NeuroD1 cooperativity is essential for gaining active chromatin and targeted expression of genes involved in cell migration. By functional manipulation in vivo, we further show that Tcf12 is essential during cortical development for the correct migration of newborn neurons and, hence, for proper cortical lamination.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Córtex Cerebral/crescimento & desenvolvimento , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/antagonistas & inibidores , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Movimento Celular , Córtex Cerebral/metabolismo , Cromatina/metabolismo , Desenvolvimento Embrionário/genética , Feminino , Histonas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Neurogênese , Neurônios/citologia , Neurônios/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA